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ABSTRACT
Recently, the analysis of remote sensing images has attracted
a lot of attention. In the domain of scene classification, deep
learning methods, especially convolutional networks (CNNs),
currently achieve the best results. Although the classification
performance has reached a high level, there are still some
factors limiting the improvement of classification accuracy.
Based on obeservation of remote sensing scene images, we
fing that some scenes are quite similar though they belong
to different classes. To improve the classification perfor-
mance between different scenes with similar characteristics,
we propose a significant Feature Sparsity Layer that can be
esaily embedded into various convolutional network architec-
tures. The proposed layer can inhibit the confusing features
meanwhile stress the discriminative features, and it is used
to sparse the multi-layer feature map, which is extracted by
the convolutional layers. The proposed method achieves the
state-of-the-art results on three datasets UC Merced Land
Use, Aerial Image Data and OPTIMAL-31, and competitive
result on dataset WHU-RS19.

Index Terms— Remote sensing image, scence classifica-
tion, CNNs, feature sparsity

1. INTRODUCTION

Benefited from the rapid development of remote sensing
equipments, many researches on remote sensing images have
been significantly explored, including scene classification,
disaster detection, hyperspectral image classification [1] and
so on. Compared with normal RGB images, remote sensing
images have its characteristic bucause of its capture mode.
Usually they cover a large area containing abundant spatial
information with a overhead view. Scene classification of
remote sensing images is a basic but challenging task because
of various classes and complex spatial information, and re-
searchers have proposed many different methods to improve
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Fig. 1. Airport and Bridge belong to different scenes but their
features are similar such as long stride road and dense green
vegetation.

the performance of scene classification. According to the
ways of extracting features, these methods can be roughly
divided into two categories as following:

A. Traditional Methods. This type of methods are
first used for scene classification and they are based on hand-
crafted features including global features and local features.
Global features, e. g. color histograms and texture descrip-
tors, can be directly delivered into the classifier, meanwhile
local features, such as scale-invariany feature transform, need
to be firstly integrated to an entire representation before being
sent into the classifier. What’s more, these individual fea-
tures can be fused to generate more comprehensive features
with some certain methods. However, this type of features
only contain low-level spatial information with the lack of
hign-level semantic information.

B.Deep Learning Methods. With the rapid develop-
ment of hardware resources and huge labeled datasets, deep
learning methods, especially convolutional neural networks
(CNNs) such as [2] [3] [4] [5], have achieved the best results
in the domain of scene classification of remote sensing im-
ages. A typical disadvantage of CNNs is that there are abun-
dant parameters that need to be optimized, which can lead to
the overfitting problem. Fortunately, the CNN architectures
can be pre-trained on huge image database ImageNet before
being applied in scene classification. And the main advantage
of CNNs is that the neural networks can automatically learn
the discriminative features for scene classification. Compared
with handcrafted features, the deep learning features contain
not only low-level spatial information, but also high-level se-
mantic information.
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Fig. 2. The whole classification framework with the proposed feature sparsity layer. ”GAP”, ”FC” and ”LRN” represent global
average pooling, fully-connected layer and local response normarlization, respectively. And fw is the function that weights the
features according to the corrsponding channel they are in.

Despite the performance of scene classification is already
excellent, there are some problems need to be solved. Based
on obeservation of remote sensing scene images, we find that
some scenes are quite similar though they belong to different
classes. As shown in Fig. 1, there are two scenes of Airport
and Bridge. Both of them have long stride road and dense
green vegetation, which are quite similar and confusing fea-
tures. Meanwhile, there are also some discriminative features
like terminal buildings in Airport and the river in Bridge.

To address this problem, we propose a Feature Sparsity
Layer (FSL) motivated by Squeeze-and-Excitation Networks
(SEnet) [6] and Local Response Normalization (LRN) [7].
SEnet is firstly proposed to weight different features in units
of channels, but it can also be regarded as a channel-wise
sparsity operation. And LRN is used to inhibit the features
at the same position in the adjacent channels inspired by ”lat-
eral inhibitio” in Neurobiology, such that it can be seen as
an element-wise sparsity operation. The proposed FSL com-
bines them reasonably with the effectiveness of stressing the
discrimanative features and inhibiting the confusing features.
Similarly, [8] proposes a sparse operation for features. The
contributions of our work can be summarized as follows:

1. We propose a significant Feature Sparsity Layer that
weights high-level semantic features with respect to
channels and elements. The sparsed high-level seman-
tic features are more effective for scene classification
of remote sensing images.

2. The Feature Sparsity can be easily embedded into var-
ious CNN architectures and and help them to break-
through their upper limits of scene classification.

3. CNN architecture Resnet101 attatched by the proposed
Feature Sparsity Layer achieves excellent results on
several public scene datasets of remote sensing im-
ages, including the state-of-the-art results on three

datasets UC Merced Land Use, Aerial Image Data and
OPTIMAL-31, and the competitive result on dataset
WHU-RS19.

2. METHOD

The whole classification framework with the proposed fea-
ture sparsity layer is illustrated in Fig. 2. The proposed FSL
only plays an role of sparsing features, without changing the
dimension of feature map. FSL can be composed of the fol-
lowing two parts: 1) Sparsing channels. 2) Sparsing elements.

2.1. Sparsing Channels

In convolutional networks, each channel of feature map can
be regarded as an individual unit at a view of semantic in-
formation. However, different channels should have the un-
equal contribution to scene classification as mentioned above.
Thus it is necessary to assign different channels with different
weights to achieve the purpose of sparsing channels. Refering
to [6], we adopt the following steps:

Step A: Calculating the global average value of each
channel by using Global Average Pooling (GAP). The input
is the multi-layer feature map U , which is extracted by the
convolutional layers of CNN architectures. Its size is H x W
x C, which denote width, height and the number of channels,
respectively. Element at position (i, j) in c-th channel is de-
noted as uc(i, j). And the output is a vector of 1 x 1 x C,
denoted as w ∈ Rc. So the c-th element of w is calculated by:

w(c) =
1

H ×W

H∑
i=0

W∑
j=0

uc(i, j) (1)

Step B: Capturing the dependencies between channels. To
fulfill this objective, nolinear operations (two fully-connected
layers with activation funciton of Sigmod that are not shown



in Fig. 2.) are added after Global Average Pooling. The first
fully-connected layer reduces the dimension of w from C to
C/16, meanwhile the secend fully-connected layer restores
the dimension from C/16 to C. The output of this step is
denoted as w′ and it is calculated by:

w′ = σ(f2(σ(f1(w))) (2)

where f1 and f2 represent the two fully-connected layer,
and σ is the activation function Sigmod. Step C: Assigning
features the corresponding weight according to the channels
which they are in. Input of this step is multi-layer feature map
U and the weight vector w′, and the output is the weighted
multi-layer feature map U ′ with the same size as U . The
element at position (i, j) of c-th channel of U ′ is calculated
by:

u′c(i, j) = w′(c) ∗ uc(i, j) (3)

2.2. Sparsing Elements

After finishing the operation of channel-wise sparsity, it is
necessary to perform the element-wise sparsing operation.
We make use of Local Response Normalization (LRN) to
fulfill this objective. Referring to [7], wo apply LRN in the
following format:

u′′c (i, j) = u′c(i, j)/(k + α

min(C−1,c+n/2)∑
c=max(0,c−n/2)

(u′c(i, j))
2
)β

(4)
where uc′(i, j) is the element of input U ′, meanwhile

uc
′′(i, j) is the element of output U ′′ which is the feature

map sparsed by LRN. C is the number of the channels. k, α,
β and n are the hyper parameters, and in this paper their value
are 0.0001, 0.75, 1 and 2, respectively. After finishing these
two sparsing operations, the sparsed multi-layer feature map
U ′′ is used for classification.

3. EXPRIMENTS

To prove the effectiveness of the proposed Feature Sparsity
Layer, we embed it to several classic CNN architectures and
choose the architecture with the best perfermance. Then we
train and test the architecture with FSL on several public
scene datasets of remote sensing images.

3.1. Datasets

We experiment on four public scene datasets of remote sens-
ing images: UC Merced Land-Use Data Set (UCM), WHU-
RS19 (WHU), Aerial Image Data Set (AID) and OPTIMAL-
31 Data Set (OPD). Because these datasets have no standard
criteria of spliting (no benchmarks), we randomly split each
of them into training set and test set at a splitting ratio that is
consistent with other related literature. Their basic informa-
tion in experiments is summarized in Table 1.

Table 1. BASIC INFORMATION OF THE DATASETS ON
EXPERIMENTS.

WHU UCM OPD AID
classes 19 21 31 30
size 600 x 600 256 x 256 256 x 256 600 x 600
training images 597(60%) 1680(80%) 1488(80%) 5000(50%)
test images 408(40%) 420(20%) 372(20%) 5000(50%)

3.2. Training Strategy

During the training process, we select Stochastic Gradient
Descent (SGD) to optimize the whole model with the fol-
lowing parameters: The momentum is 0.9, and the learning
rate is set to 0.0001 without weight decay. The batch size in
experiments is 64. We use TenCrop to augment training set:
all training samples are resized to 256 x 256, then an area of
224 x 224 is randomly cropped from five corners (upper left,
lower left, upper right, lower right and the center) and five
flipped corners. When validating and testing, images are re-
sized to 256 x 256 and the center area of 224 x 224 are used
to evaluate the models. To fairly compare the original CNN
architectures and the architectures attached by FSL, it is the
condition for stopping training the models that the accuracy
no longer increases for 50 epochs.

3.3. Results

Table 2. EXPERIMENTS ON AID OF FOUR CNN AR-
CHITECTURE WITHOUT/WITH FEATURE SPARSITY
LAYER.

Architecture Accuracy
Bninception 86.14%
Bninception-FSL 87.08%
InceptionResnetv2 93.74%
InceptionResnetv2-FSL 94.44%
Resnet34 94.00%
Resnet34-FSL 94.06%
Resnet101 95.10%
Resnet101-FSL 95.88%

Firstly it is necessary to find an optimal combination of
the CNN architecture and FSL. We add the Feature Sparsity
Layer to four CNN architectures including Bninception [10],
InceptionResnetv2 [11], Resnet34 and Resnet101 [12] (All of
them are pre-trained on ImageNet). In this step, dataset AID
id used to evaluate their performance and the experimental
results are shown in Table 2. From the result we can find
FSL can help all of the CNN architectures to breakthrough
their upper limits with the increase of 0.64% on average. And
performance of resnet101 with FSL is the best combination
among all the models, so we choose resnet101 with FSL as
the constract model in the next experiments.



Table 3. COMPARISON RESULTS ON FOUR PUBLIC
DATASETS OF THE PROPOSED METHOD AND THE
OTHER MODELS.

Model WHU UCM
Resnet101-FSL 98.77% 99.52%
Resnet101 98.53% 98.81%
ARCNet-VGG16 [5] 99.75±0.25% 99.12±0.40%
Combing Scenarios I and II [3] 98.89% 98.49%
Fusion by Addition [9] 98.65±0.43% 97.42±1.79%
VGG-VD-16 [4] 96.05±0.91% 95.21±1.20%

Model OPD AID
Resnet101-FSL 95.16% 95.88%
Resnet101 94.62% 95.10%
ARCNet-VGG16 [5] 92.70±0.35% 93.10±0.55%
Combing Scenarios I and II [3] —– —–
Fusion by Addition [9] —– 91.87±0.36%
VGG-VD-16 [4] 89.12±0.35% 89.64±0.36%

Then we experiment resnet101 with FSL on the other
three datasets and compare all the results in this experiments
with the existing state-of-the-art results. They are summa-
rized in Table 3. From the table we can see that resnet101
with the proposed Feature Sparsity Layer achieves the excel-
lent results: the best classification accuracy on three datasets
including UC Merced Land Use, Aerial Image Data and
OPTIMAL-31, and a competitive performance on dataset
WHU-RS19. Because the dataset WHU-RS19 is randomly
splited which leads to the ratio of training samples is less than
60% in fact (see Table 1), the accuracy of resnet101 with FSL
is not as good as ARCNet-VGG16. These results prove the
effectiveness of the proposed Feature Sparsity Layer.

4. CONCLUSION

In this paper, we find that there are some quite similar seman-
tic features between some certain scenes through observation
of the remote sensing images. Based on this observation, we
propose Feature Sparsity layer, which can be easily embed-
ded into various CNN architectures, to stress the discrimina-
tive features and inhibit the confusing features. Experimental
results prove the effectiveness of the proposed method.
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